Product Description

HyStem® Hydrogel Kits - The blank slate matrix.

HyStem® hydrogels are xeno-free and completely customizable. Recommended for applications requiring specific attachment factor optimization as well as non-adherent cell culture, cellular applications. Extracellular matrix proteins can be mixed into the hydrogel and incorporated non-covalently before gelation. Alternatively, attachment peptides having an N-terminal cysteine can also be covalently linked to the matrix.

The HyStem Hydrogel Kits are optimal for culturing stem cells whose natural environment is rich in hyaluronic acid (HA). HyStem hydrogels can be customized by adding extracellular matrix (ECM) proteins or cell attachment peptides into the hydrogel to provide attachment site and/or differentiation signals. They can also be varied by changing the hydrogel rigidity to match that of the native cell environment. The HyStem hydrogel system is viable for cell culture in any format, from T-flasks and tissue culture inserts to 384-well microplates. 

Features

  • Dimensionality (3-D encapsulation or 2-D plating on top of hydrogel)
  • Flexible culture format (384- through 6-well plates, tissue-culture inserts, and T-flasks)
  • Variable amounts and type of ECM protein incorporated
  • Gelation properties including gelation time and hydrogel stiffness

Animal-free System
HyStem hydrogels are xeno-free since its two components are thiol-modified hyaluronan (Glycosil®) and a thiol-reactive crosslinker (polyethylene glycol diacrylate, Extralink®-Lite). The hyaluronic acid used to produce HyStem is made by a proprietary bacterial-fermentation process using bacillus subtilis (Novozymes). It is 100% free of animal-derived raw materials and no animal-derived ingredients are used in its production. Extralink (polyethylene glycol diacrylate) is made by adding acrylate groups to both ends of a polyethylene glycol (PEG) polymer. PEG is derived from petroleum and inorganic sources and contains no animal source materials. 

Gelation
Reconstituted HyStem-C components remain liquid at 15 to 37°C for several hours. The hydrogel is formed when the crosslinking agent, Extralink®-Lite (PEGDA) is added to a mixture of Glycosil® (thiol-modified hyaluronan. Gelation occurs in about twenty minutes after all three components are mixed. No steps depend on low temperatures or low pH. Diluting the components with phosphate-buffered saline (PBS) or cell-culture medium can increase the gelation time. 

3D Cell Recovery Matrix
For application where cell recovery is critical, the alternative crosslinker PEGSSDA is available for use with all HyStem hydrogel kits. This crosslinker provides the same advantages offered by Extralink with the additional benefit of containing easily reducible internal bonds. This allows for fast, easy recovery of single cells or clusters from the hydrogel for applications like RNA analysis or flow cytometry instead of slow enzymatic methods that can impact cell viability. Researchers are encouraged to contact us to determine the compatibility of particular cell types or culture systems with PEGSSDA.

Directions for Use

Download the HyStem® hydrogel kit instructions for:

Catalog #GS310 2.5 mL Trial Kit

Catalog #GS311 7.5 mL Kit

Catalog #GS1004 12.5 mL Kit

Product References

References for HyStem®:

Gaetani, R., et al. (2015) Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61: 339-348. PMID: 17335875.

Prestwich, G.D., et al. (2007) 3-D culture in synthetic extracellular matrices: new tissue models for drug toxicology and cancer drug discovery. Adv Enzyme Regul 47: 196-207. PMID: 17335875.

Shu, X.Z., et al. (2006) Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J Biomed Mater Res A 79: 901-912. PMID: 16941590.

Shu, X.Z., et al. (2003) Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 24: 3825-3834. PMID: 12818555.

S. Cai, et al. (2005) Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor.Biomaterials, 26, 6054-6067.

D. B. Pike, et al. (2006) Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials, 27, 5242–5251.

G. D. Prestwich, et al. (2007) 3-D Culture in Synthetic Extracellular Matrices: New Tissue Models for Drug Toxicology and Cancer Drug Discovery. invited, Adv. Enz. Res., in press (2007).

X. Z. Shu, et al, (2006) Synthesis and Evaluation of Injectable, In Situ Crosslinkable Synthetic Extracellular Matrices (sECMs) for Tissue Engineering. J. Biomed Mater. Res. A, 79A(4), 901-912.

Shu, X.Z., et al. (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25: 1339-1348. PMID: 14643608. 

Mehra, T.D., et al. (2006) Molecular stenting with a crosslinked hyaluronan derivative inhibits collagen gel contraction. J Invest Dermatol 126: 2202-2209. PMID: 16741511. 

Shu, X.Z., et al. (2004) Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J Biomed Mater Res A 68: 365-375. PMID: 14704979. 

Ghosh, K., et al. (2007) Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials 28: 671-679. PMID: 17049594.

Product Certificate of Analysis

No result for .

Product Disclaimer

This product is for R&D use only and is not intended for human or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.